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Abstract

The paper investigates a cylindrical shell which has two stable configurations, due to a particular distribution of

residual stresses induced by plastic bending. The basic mechanics of the bistability are explained, along with details of

the plastic forming. A comprehensive analytical model is developed which predicts the residual stress distribution and

bistable configurations of the shell. Good correlation has been found between experimental results and predictions from

this model.
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1. Introduction

Bistable structures have many applications, the most common being in mechanical and electro-

mechanical devices that switch between a discrete number of states. They are also of great interest in the

field of deployable structures, where they can be used to develop deceptively simple structures that reliably

deploy from their packaged state into their operational configuration.

It is well-known that a thin elastic shell in the form of a portion of a cylindrical surface, of arbitrary

length, radius, and cross-sectional angle can be flattened at one end and rolled up. This is the working

principle of the steel tape measure, which typically has cross-sectional angles of 50–70�, and also of the

storable tubular extendible member (Rimrott, 1965) and a family of related structures (MacNaughton
et al., 1967) with cross-sectional angles up to 400�. Although the deformation of these shells is essentially

inextensional, as both the extended and coiled configurations are cylindrical and hence there is no change in

the product of the two principal curvatures, or gaussian curvature (Calladine, 1983), there is still a sig-

nificant amount of bending strain energy in the coiled configuration. These coiled shells are not in equi-

librium without the application of external forces, and hence a containment mechanism is required. An

example is shown in Fig. 1.
* Corresponding author. Tel.: +44-1223332721; fax: +44-1223332662.

E-mail address: pellegrino@eng.cam.ac.uk (S. Pellegrino).
1 Currently at Deep Sea Engineering, London, UK.

0020-7683/$ - see front matter � 2004 Published by Elsevier Ltd.

doi:10.1016/j.ijsolstr.2004.01.028

mail to: pellegrino@eng.cam.ac.uk


Nomenclature

C material stiffness matrix

Ct material tangent stiffness matrix

D plate bending stiffness

E Young�s modulus

Ei tangent modulus at point i
f yield function

Mix, Miy edge bending moments per unit length at step i
t thickness
U strain energy per unit area

x, y longitudinal and transverse coordinates (defined for original configuration)

z through-thickness coordinate measured from mid plane

zcr critical depth

a elastic stress factor

� vector of principal strain components

�x, �y normal strain components

h twist angle
j curvature vector

jc curvature of cylindrical surface

jix, jiy longitudinal and transverse curvatures at step i
m Poisson�s ratio
r vector of principal stress components

rix, riy normal stress components at step i
rM von Mises effective stress

r0 yield stress in pure tension

Subscripts and superscripts

ð Þcr critical depth

ð Þe elastic

ð Þp plastic

ð Þy non-linear material property

ð Þ0, ð Þ00 values at zcr and at surface

Operators

d change between two consecutive sub-increments

D change between two consecutive steps

ð_Þ rate of change
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There are two different ways of making the coiled configuration of these cylindrical shells stable, so that
the containment mechanism becomes unnecessary. The first approach, first exploited by Daton-Lovett

(1996) in the design of composite booms able to carry heavy inspection devices in nuclear reactors, makes

use of special lay-ups of the composite. It has been investigated by Iqbal and Pellegrino (2000), Iqbal et al.

(2000), and Galletly and Guest (2004a,b). In this approach the non-zero curvatures, transverse in the ex-

tended configuration and longitudinal in the coiled configuration, have equal signs––as in the tape measure

of Fig. 1. Several studies of related bistable composite structures have been made by Hyer (1981a,b).
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The second approach, which is the object of this paper, is complementary to the first, and leads to the

two curvatures being of opposite sign. Fig. 2 shows the steel tape that is found inside the bright fabric cover

of a ‘‘slap bracelet’’ that can be found in many toy stores. Fig. 2(a) and (e) show the two stable configu-

rations. Configuration (a) represents a high energy state; if one flattens any cross-section, the structure
jumps to the configuration (e). If one flattens both end cross-sections and holds the ends allowing two

separate coils to form and gradually move towards one another, then the intermediate configurations (b)–

(d) are observed. Between the configuration in Fig. 2(c) and (d) there is a sudden snap as the central part

of the shell ‘‘pops up’’.
Fig. 2. Transition from extended to rolled-up configuration of a bistable prestressed shell; the configurations (b–d) are unstable.

Fig. 1. Steel tape measure (ca. 1950). Note that the transverse curvature of the extended tape and the longitudinal curvature of the

coiled tape are in the same sense.
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This paper explains why this particular tape behaves as it does, and describes a forming process that

leads to this behaviour. An analytical model of this elasto-plastic forming process is then introduced, based

on the assumption that the shell is uniformly curved, from which quantitative predictions can be made.

Predictions for beryllium–copper tapes with different radii of curvatures are made and compared with
experimental measurements; they are found to be in good agreement.

The layout of the paper is as follows. Section 2 presents some initial experimental observations. Section 3

describes the elasto-plastic forming process of a thin metallic strip that leads to a distribution of residual

stresses that cause bistable behaviour. The associated stress distributions are analysed, assuming a rigid-

perfectly plastic material model, and analytical expressions for the distribution of residual stresses and

curvatures of the strip in the two equilibrium configurations are obtained. Section 4 presents a more

realistic, iterative technique for simulating the forming process, leading to a more refined estimate of the

stresses and curvatures. Sections 5 and 6 compare the results from this model to measurements obtained
from six experiments. Section 7 investigates the stability of equilibrium configurations identified in the

earlier part of the study. Section 8 discusses the results obtained and concludes the paper.
2. Two physical models

Since it is unusual for a shell structure to behave in the way shown in Fig. 2, it seems obvious to
investigate if some initial stresses in the shell might be the cause of this behaviour. Hence, the steel tape was

sliced up longitudinally and transversally, and the strips that were obtained are shown in Fig. 3. It can be

seen that the longitudinal strips are curved upwards, whereas the transverse strips are curved downwards

and have a curvature matching the transverse curvature of the shell in the extended configuration. Clearly
Fig. 3. Sliced-up shell.

Fig. 4. Bistable structure made of half-circular strips.



E. Kebadze et al. / International Journal of Solids and Structures 41 (2004) 2801–2820 2805
the tape is subject to initial bending stresses. If the tape is held completely flat, the longitudinal and

transverse stresses tend to bend it in opposite directions.

A simple, related bistable structure can be made from half-circular strips made from beryllium–copper,

as follows. Fig. 4(a) shows 12 identical strips, divided into two parallel sets, one curved upwards and one
downwards. In Fig. 4(b) the two sets of strips are held straight in a wooden frame and have been spot-

welded at each intersection point. When this structure is removed from the frame, it is found to be bistable,

and Fig. 4(c) and (d) show its two stable configurations. Note that, due to the plastic deformation that

occurs during welding, the curvatures in the two configurations are smaller than in the original strips.
3. Forming process and residual stresses

The simplest way of inducing residual stresses in a homogeneous, isotropic shell is by deforming it

beyond its yield point. This section describes the various steps of the forming process, and explains how the

associated stress distribution can be achieved, assuming a simple elastic–perfectly plastic material model. A
more accurate analysis of the stress state is then presented in Section 4.

Fig. 5 shows the two stable configurations of a shell made by heat-treating a thin, square sheet of

beryllium–copper and then plastically bending it as described next. This shell is initially manufactured by

placing a flat sheet of soft, annealed beryllium–copper in a cylindrical former, where it is age-hardened by

suitable heat treatment. Fig. 6 shows the cylindrical shell that is thus obtained; this initial configuration is

assumed to be unstressed.

A curvilinear coordinate system will be used throughout this paper. The x and y-directions are defined to

be parallel to the cylindrical and circumferential axes, respectively, when the shell is in its initial configu-
ration and the z-coordinate is perpendicular to the cylindrical surface. The x and y-directions will be

principal directions of curvature throughout, and it will be also assumed that the curvature of the shell is

uniform. For clarity, in Fig. 6 and subsequent figures we have shown the orientation of the shell by drawing

the tangent vectors to the x and y-directions at a point on the centre line. Note that, because of the uniform

curvature assumption, there is no need to choose a specific origin for the coordinate system.

Our sign convention for curvature is defined in Fig. 6 and the sign convention for moments follows from

it, i.e. positive moments apply positive curvatures. Note that the principal, initial curvatures are j0x ¼ 0 and

j0y > 0.
The cylindrical beryllium–copper shell obtained as described above is then put through a series of

uniform curvature changes that leave behind a set of residual stresses that make it bistable. Note that in the

curvature changes that are described, stretching of the mid-surface of the shell is always avoided by going

through a flat, intermediate configuration instead of going directly from one curved configuration to

another.
Fig. 5. Bistable shell made of beryllium–copper.



1/κ

κ

0y (>0)

0x =0

y

x

z

by

bx

(a)

z

t/2

-t/2

x

z

y

t/2

-t/2

(b)

σ σ

Fig. 6. Initial configuration (step 0).

2806 E. Kebadze et al. / International Journal of Solids and Structures 41 (2004) 2801–2820
The first step in the forming process consists in flattening the shell by applying edge bending moments

per unit length M1x and M1y such that j1x ¼ j1y ¼ 0, Fig. 7(a). Assuming that the shell remains in the elastic

range during this deformation, the stress distribution through the thickness is linear, as shown in Fig. 7(b).

The stress r1y is the direct result of the imposed change of curvature in the y-direction, whereas the stress

r1x is due to Poisson�s ratio effects; these stresses are determined by:
r1x ¼ � mE
1� m2

zj0y ð1Þ
r1y ¼ � E
1� m2

zj0y ð2Þ
where z is the distance from the mid-surface of the shell; E is the Young�s Modulus and m the Poisson�s ratio
of the material. Eqs. (1) and (2) are valid for thin shells, where the product of thickness by curvature is

small; this assumption is carried through the rest of the derivation. In the present study, the largest value of

this product is 3%.
In the second step, the bending moment Mx is further increased in magnitude until jx reaches the value

j2xð< 0Þ, see Fig. 8(a). During this process the transverse curvature jy is kept constant, hence j2y ¼ 0.

However, no edge bending moment My needs to be applied because membrane stresses equivalent to the

resultant of the required M2y are set up in the shell, see Fig. 9. The magnitude of these membrane stresses is

negligible in comparison with the bending stresses, and hence they will be neglected. Right on the edge, the
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Fig. 7. Flattening the shell (step 1).
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shell will maintain its original curvature j0y and hence a small boundary layer will form; this effect will be
neglected for simplicity.

The magnitude of j2x is such that plastic deformation occurs for jzj > zcr. In order to find zcr the central
portion of the shell, jzj < zcr, is assumed to behave elastically and hence the stress distribution is linear, as

shown in Fig. 8(b), and is determined by:
r2x ¼
E

1� m2
zðj2x � mj0yÞ ð3Þ
r2y ¼
E

1� m2
zðmj2x � j0yÞ ð4Þ
The critical depth zcr can be determined using the von Mises yield criterion for plane stress
r2
x � rxry þ r2

y ¼ r2
0 ð5Þ
where r0 is the yield stress in simple tension, and Eqs. (3) and (4) can be substituted for rx and ry . Hence,

solving for z
zcr ¼
ð1� m2Þr0

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2Þðj0y þ j2xÞ2 þ ðmj0y � j2xÞðj0y � mj2xÞ

q ð6Þ
Between þzcr and �zcr the material behaves elastically. Beyond these limits the stress distribution depends

on the plastic properties of the material, i.e. its hardening characteristics. Even for an elastic–perfectly

plastic material it is impossible to find the exact stresses after yield without a detailed, iterative calculation.

This is because of the interaction between elastic and plastic deformation, and the two-dimensional nature

of the present situation.
Fig. 9. Bending stresses in equilibrium with membrane stresses.
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Fig. 10(a) shows the yield locus for a von Mises material in plane stress, and the stress trajectory for a

point on the bottom surface of the shell, as we go through the first two steps.

Fig. 10(b) shows the strain trajectory for the same point. As the shell is flattened in step 1, ex ¼ 0 and

ey > 0, hence in Fig. 10(b) the strain goes from O to A and the stresses change accordingly, see Fig. 10(a).
The slope of the line OA in stress space depends on the Poisson�s ratio of the material.

During step 2 only jx and ex change. In stress space the corresponding line ABD has a different slope

from OA. If the shell was completely elastic the stresses would go to point D, but at point B yielding begins

and hence the stress trajectory has to follow the yield locus to point C. Meanwhile, in strain space––Fig.

10(b)––the total strain trajectory is in the same direction as before, as jy and hence ey continue to be zero,

but now each strain increment consists of two components: elastic, ee, and plastic, ep. The elastic strain

component brings the stresses to point C, on the yield locus, and the plastic strain is such that the total

strain is an increment purely in ex, thus leading to point C0 in Fig. 10(b).
The location of point C depends on how far D is from B. If they coincide, then the material has just

yielded and there is no movement on the locus and so ep ¼ 0. If D was very far from B, then kepk � keek
and so, assuming ee � 0, the total strain increment has to satisfy the plastic flow rule (Lubliner, 1990).

Hence, since the strain increment involves only ex, the stresses would have to correspond to point G.

In this particular case, though, ee and ep are of the same order, and so the stresses will be on the locus

somewhere between points B and G. The exact location can only be found through a proper elasto-plastic

iteration but the result is schematically shown by the zig-zag line in Fig. 10(b). A proper iterative solution

will be described in the next section.
Having shown that the exact stresses beyond zcr cannot be found in a simple way, we will make a crude

simplifying assumption that enables us to complete this preliminary analysis. We will assume that the

stresses in the plastic region are uniform. The corresponding stress distribution, shown in Fig. 8(b) with a

solid line, is fully determined by zcr and by
r0
2x ¼ r00

2x ¼
E

1� m2
zcrðj2x � mj0yÞ ð7Þ
r0
2y ¼ r00

2y ¼
E

1� m2
zcrðmj2x � j0yÞ ð8Þ
In step 3 the moment M2x is removed from the shell. This unloading is assumed here elastic, and leaves

the shell with a residual curvature j3xð< 0Þ, as shown in Fig. 11(b). The stress increments from the end of

step 2 are due to the curvatures changes j3x � j2x only, as j3y ¼ j2y ¼ 0. Therefore
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Fig. 10. Stress (a) and strain (b) trajectories for a point at z ¼ �t=2, during steps 1 and 2.
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r0
3x ¼ r0

2x þ
E

1� m2
zcrðj3x � j2xÞ ð9Þ

r0
3y ¼ r0

2y þ
E

1� m2
zcrmðj3x � j2xÞ ð10Þ

r00
3x ¼ r00

2x þ
E

1� m2
t
2
ðj3x � j2xÞ ð11Þ

r00
3y ¼ r00

2y þ
E

1� m2
t
2
mðj3x � j2xÞ ð12Þ
The configuration of the shell at the end of step 3 is determined by the requirement that the residual

stresses rx in this configuration have zero resultant moment. Integrating rxz gives
M3x ¼ 2
1

3
r0
3xz

2
cr

�
þ r0

3x þ r00
3x

2

t
2

�
� zcr

�
zcr

�
þ

t
2
� zcr
3

r0
3x þ 2r00

3x

r0
3x þ r00

3x

��
ð13Þ
Setting M3x ¼ 0 and substituting Eqs. (3), (10) and (11), gives an equation that can be solved for j3x to

obtain
j3x ¼
zcr
t3
ð4z2cr � 3t2Þðj2x � mj0yÞ þ j2x ð14Þ
Note that j3x is a function of the initial curvature j0y , the applied curvature j2x, and of the yield stress of

the material, through zcr. At this curvature the stresses ry have non-zero resultant, but are equilibrated
by membrane stresses, as shown in Fig. 9.

The plastic forming process is now complete, and the shell is in one of its two stable states. Steps 4 and 5

now elastically transform the structure to its other stable state. In practice, see Section 5, this transfor-

mation may involve further plastic deformation, but this is not considered here, for simplicity.

In step 4, the shell is flattened again, Fig. 12, by applying the edge moments M4x and M4y . Fig. 12(b)

shows the stress distribution through the shell; the salient points can be determined from r0
2x and r0

2y , by

considering directly the elastic stress changes from step 2.

If now, step 5, the edge moment M4y is removed, the shell bends into the shape shown in Fig. 13(a) and
the moment M4x can then be removed without causing any significant deformation in the x-direction. In
analogy with step 3, the removal of M4x results in purely membrane stresses. The shell is deformed until the
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bending moment resulting from ry is zero, and this determines the value of the curvature j5y . Again, a

purely linear-elastic response is assumed and hence the salient stress values corresponding to the curvatures

j5xð¼ 0Þ and j5y are
r0
5x ¼ r0

2x þ
E

1� m2
zcrðmj5y � j2xÞ ð15Þ

r0
5y ¼ r0

2y þ
E

1� m2
zcrðj5y � mj2xÞ ð16Þ

r00
5x ¼ r0

2x þ
E

1� m2
t
2
ðmj5y � j2xÞ ð17Þ

r00
5y ¼ r0

2y þ
E

1� m2
t
2
ðj5y � mj2xÞ ð18Þ
The residual curvature j5y can be found, as before, by setting the moment of the stresses ry equal to zero.

This gives
j5y ¼
zcr
t3
ð4z2cr � 3t2Þðmj2x � j0yÞ þ mj2x ð19Þ
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The two stable configurations of the structure in Fig. 5 correspond to the curvatures j3x and j5y . Note

that their analytical expressions, given by Eqs. (14) and (19), are similar, apart from swapping the terms

multiplied by the Poisson�s ratio.
4. Modelling the forming process

The simple model of the forming process described in the previous section is unable to capture the actual

behaviour of high yield strain, strain hardening materials, and hence gives rather poor agreement with

experiments. To obtain reasonable predictions a more refined model is required, involving an iterative

analysis, and this will be presented next.

The simulation of the forming process follows the same sequence of deformation that was described in
the previous section. Again, the bending curvatures are assumed to be uniform throughout the shell, hence

only an element of shell of unit dimensions needs to be analysed, and stretching of the mid-surface is

ignored. Plane sections are assumed to remain plane.

An isotropic strain hardening material model is assumed; this is the simplest model that captures the

behaviour observed experimentally. Readers are referred to textbooks such as Lubliner (1990) for an

introduction to this model and to Crisfield (1991) for details on the computational formulation adopted

here. A brief review of the computational procedure is given next.

Fig. 14 shows the stress–strain relationship for the age-hardened beryllium–copper used in our experi-
ments, obtained experimentally from a uniaxial test in tension. This curve can be approximated as piecewise

linear; the corresponding pairs of stress/strain values are listed in Table 1.

After first yield, the plastic strain at point i is determined by:
epi ¼ eyi �
ry
i

E
ð20Þ
To model strain hardening, the quantity ory=oep is required. This can be obtained from
Hi ¼
ory

oep
¼ Ei

1� Ei=E
ð21Þ
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Table 1

Properties of beryllium–copper in tension (test cases 3 and 4)

Linear properties Non-linear properties

ey ry (N/mm2)

0 0

Young�s modulus E ¼ 1:30� 105 N/mm2 0.0050 650

0.0062 780

Yield stress ry
0 ¼ 650 N/mm2 0.0075 883

0.0088 949

Poisson�s ratio m ¼ 0:3 0.0105 1003

0.0125 1043

0.0145 1071

0.0168 1096

0.0200 1123
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where Ei is the tangent modulus, i.e.
Ei ¼
ry
i � ry

i�1

eyi � eyi�1

ð22Þ
Assuming that the shell is in a state of plane stress, at a general point the principal stress components

are defined by the stress vector
r ¼ rx

ry

� �
and the principal strains by the strain vector
e ¼ ex
ey

� �
The von Mises effective stress is
rM ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
rTAr

p
ð23Þ
where
A ¼ 2 �1

�1 2

� �
and hence the yield condition can be written in the form
f ¼ rM � ry
0 ¼

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
rTAr

p
� ry

0 6 0 ð24Þ
Before the material yields, r and e are related by r ¼ Ce, where C is the material stiffness matrix
C ¼ E
1� m

1 m
m 1

� �
After the material has yielded the effective plastic strain rate is
_ep ¼
2ffiffiffi
3

p ð_e2px þ _e2py þ _epx _epyÞ ð25Þ
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and hence the effective plastic strain is
ep ¼
Z

_ep ð26Þ
The relationship between _r and _e is given by the tangent material stiffness matrix Ct, where
Ct ¼ C I

�
� aaTC

aTCaþ H

�
ð27Þ
Here I is a 2 · 2 identity matrix, a the normal to the yield surface
a ¼ Ar

2rM

ð28Þ
and the hardening parameter H depends the current plastic strain.

The first step in modelling the forming process consists in computing the curvature changes associated

with steps 1–5 described in Section 3. The corresponding changes in the curvature vectors are:
Dj1 ¼
0

�j0y

� �
; Dj2 ¼

j2x

0

� �
; Dj3 ¼

j3x � j2x

0

� �
; Dj4 ¼

�j3x

0

� �
; Dj5 ¼

0

j5y

� �
Each curvature change is divided into a series of small sub-increments, which will be denoted by d. The
shell is divided into a series of uniformly stressed thin layers, and the bending moments caused by any given

stress distribution are determined at each increment. When the bending moment in the direction in which

the shell is curved becomes zero, the shell is in equilibrium and this condition determines the unknown

curvatures j3x and j5y .
For each curvature increment the following calculations are carried out for each layer, using Matlab

(The Mathworks, 2002):

1. The elastic stress increment corresponding to the prescribed curvature increment is determined using the

material stiffness matrix:
Dr

f ð
¼ CDe ð29Þ

where De ¼ zDj.

2. This elastic stress increment is then checked against the yield condition. Denoting by r0 the stress at the
end of the previous increment, if
r0 þ DrÞ6 0 ð30Þ

then the current increment is completely elastic, and the stress at the end of the increment is

r1 ¼ r0 þ Dr.
3. If Eq. (30) is not satisfied then, in general, the increment involves a purely elastic part, followed by an

elasto-plastic part.

(i) If the stress at the end of the previous increment was inside the yield locus, i.e. f ðr0Þ < 0, then the

intersection with the yield surface is determined from
f ðr0 þ aDrÞ ¼ 0 ð31Þ
whose solution is

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrT

0ADrÞ
2 � ðDrTADrÞðrT

0Ar0 � 2 ryð Þ2Þ
q

� rT
0ADr

DrTADr
ð32Þ

Hence, the stress due to the first part of the increment is r1 ¼ r0 þ aDr.
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(ii) If the stress at the end of the previous increment was already on the yield locus, i.e. f ðr0Þ ¼ 0, it can

be assumed that a ¼ 0 and r1 ¼ r0.

4. The remaining, elasto-plastic part of the increment is divided into m sub-increments:
de

dr

ri
¼ 1� a
m

De ð33Þ
5. Each corresponding stress sub-increment is calculated using the tangent elasto-plastic matrix Ct deter-

mined at the end of the previous sub-increment, hence
¼ Ctde ð34Þ
and the stress at the end of the sub-increment is
¼ ri�1 þ dr ð35Þ
This calculation is repeated m times.

Modelling the unloading of the shell when it is flattened and flipped back from step 3 to steps 4 and 5,

requires reverse plasticity and the Bauschinger effect to be modelled. Several ways of doing this were ex-

plored, but the most accurate results were obtained by abandoning the isotropic hardening model described

above when unloading begins. Instead, a kinematic hardening model (Lubliner, 1990) is adopted. This

involves translating the original yield locus by an amount equal to the plastic strain that was accumulated

during the previous yielding phase, until the material begins to yield in the reverse direction. At this point,

isotropic hardening is re-started and so the yield locus begins to grow again.

This is illustrated in Fig. 15. During step 2 the yield locus expands from first yield, at point B, to the
beginning of unloading at point C. During step 3 the material unloads linearly from point C to D. At point

D reverse yielding begins––note that the yield locus is obtained by translating the original locus by HC––

and the yield locus starts expanding again. Point E corresponds to the configuration in which the bending

moment M3x is zero. Point F corresponds to the flattened configuration, and point G to the final, flipped
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Fig. 15. Yield locus and stress path for a point lying on the outer surface of the shell.
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configuration. Section 6 presents detailed results obtained from this model for some particular cases that

were also modelled experimentally.
5. Experiments

Six test specimens were made by heat treatment of 0.1 mm thick strip of annealed beryllium–copper. The

treatment consisted in putting the strip into a cylindrical mould which was then put into a furnace at 316 �C
for 3.5 h. This has the effect of age-hardening the material, which sets the strip into a curved shape and
increases its yield stress. The uniaxial stress–strain relationship after heat treatment was measured for each

strip, see Table 1 and Fig. 14, and the curvature of each strip was also measured, see Table 2.

A rolling machine was made, consisting of two identical rollers with radius of 7.5 mm and a removable,

upper forming roller with radius of either 3.2 or 4.0 mm; these three rollers are driven by a single handle,

through a set of gears. This machine was used to apply the curvature j2x ¼ 1=3:2 mm�1 or j2x ¼ 1=4:0
mm�1.

For each specimen, the residual curvature j3x was measured after each specimen came out of the rolling

machine and then after flipping it over twice. The second flip would return the specimen to j3x if no further
plastic deformation occurs, however there is indeed some further deformation and so the measured values

are denoted by j0
3x. The results are listed in Table 3.
Table 2

Properties of beryllium–copper specimens

Test case Dimensions (mm2) t (mm) Radius ð1=j0yÞ (mm)

1, 2 50 · 50 0.1 10

3, 4 14

5, 6 19

Table 3

Comparison between tests and theoretical predictions

Test case 1=j2x (mm) 1=j3x (mm) 1=j5y (mm) 1=j0
3x (mm)

1 Test )3.2 )15 18 )18
Analysis )19 20 )19

2 Test )4 )34 15 )45a

Analysis )43 15 )44

3 Test )3.2 )11 30 )15
Analysis )13 44 )15

4 Test )4 )21 23 )24
Analysis )26 24 )26

5 Test )3.2 )18 36 )22
Analysis )19 38 )19

6 Test )4 )46 26 )60
Analysis )48 26 )49

aAlmost unstable.
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Fig. 16. Predicted stress distribution in test case 3, after forming.
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Note that much of the deformation imposed by the forming roller is in fact elastic, and hence it is lost

when the specimens come out of the former, i.e. they go from j2x to j3x. Also note that in all cases j3x � j0
3x,

which indicates that only a small amount of plastic deformation takes place when the shell is flipped over

for the second time. In all six cases it was observed that no further plastic deformation occurs after the

second flip.
6. Theoretical predictions

The forming of each specimen was simulated with Matlab and the predicted residual curvatures are listed

in Table 3. Typically, the elasto-plastic stresses were calculated at a minimum of 100 points, uniformly

spaced through the thickness.
The first residual curvature, j3x, just after yielding, is predicted quite accurately in most cases; the largest

error is �30% in test case 2, but in all other cases the error is 20% or less, which confirms that the elasto-

plastic behaviour has been captured quite accurately. In general, the predictions for the residual curvatures

after flipping, j5y and j0
3x, are very accurate; there is only one case where there is a large error, of 50% for j5y

in test case 3. These errors may be due to some anomaly during the forming process.

The predicted stress distribution in test case 3, after flipping the shell back to the curvature j0
3x is shown

in Fig. 16. Note that the general shape of these plots resembles Figs. 11(b) and 13(b), but the stress variation

through the thickness is now much smoother as the elastic–perfectly plastic transition in the simplified
stress–strain relationship that had been assumed in Section 3 has now been replaced with a gradual strain

hardening. The bending moment due to the rx distribution is zero, as expected; the moment due to ry is

)0.52 Nmm/mm.

According to the predictions, which are confirmed experimentally, flipping the shell back and forth after

completing the forming process is entirely within the elastic range. Therefore, any further calculation on

these shells can be done more conveniently using these residual moments, i.e. without considering the

actual, and rather complex stress distributions. This last observation will be exploited in calculating the

variation in the strain energy of the shell, in the next section.
7. Stability considerations

So far, we have considered only equilibrium conditions of a prestressed shell, but it cannot be taken for
granted that the two configurations where the shell is in equilibrium will be stable. A fully general stability
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analysis would be beyond the scope of the present study, but if we consider only deformations of the shell

that are uniform and inextensional it becomes possible to derive a simple expression of the strain energy
from which we can establish if the equilibrium configurations that we have identified are also stable; further

details will be provided in Guest and Pellegrino (2004). Through this process we will also understand some

more general aspects of the bistable behaviour of the shell.

For all uniform inextensional deformations the mid-surface of a cylindrical shell will lie on a cylindrical

surface; let the radius of this cylinder be 1=jc. Different amounts of twist can be imparted by rotating the

shell with respect to the axis of the cylinder, as shown in Fig. 17. The angle between the global X -axis on the

cylinder and the local x-axis on the shell is denoted by h, as shown.
Consider a cylindrical shell with initial curvature j0c in the x-direction. In this initial configuration the

shell is not stress free, but is subject to uniform initial stresses ry which have resultant bending moment per

unit lengthM0y . This resultant moment is equilibrated by (small) membrane stresses acting in the y-direction
and hence the shell is in equilibrium in this configuration.

Now consider an alternative configuration of this shell, obtained by changing the radius of the under-

lying cylinder to jc and by imposing a twist h. The corresponding changes in curvatures and twist in

the local coordinate system x, y can then be obtained by transforming the curvatures expressed in the

global coordinate system X , Y to x, y (Timoshenko and Woinowsky-Krieger, 1959; Calladine, 1983) which

gives
Djx ¼
jc

2
ð1þ cos 2hÞ � j0c

Djy ¼
jc

2
ð1� cos 2hÞ

Djxy ¼ � jc

2
sin 2h

ð36Þ
This assumes the definition jxy ¼ �o2w=oxoy for the twisting curvature, as is standard in the plates and

shells literature (but not in the composites literature, where usually jxy ¼ �2o2w=oxoy).
The strain energy in this new configuration can be readily estimated if edge effects are neglected, i.e. if

one assumes––as throughout this paper––that Djx, Djy , and Djxy are uniform throughout the structure.

The strain energy per unit area of a shell that is subject to elastic curvatures jx, jy , jxy but no mid-surface

strains has the expression
U ¼ 1

2
Mx My Mxy½ �

1 0 0

0 1 0

0 0 2

2
4

3
5 jx

jy

jxy

2
4

3
5 ð37Þ
Equivalent expressions can be obtained by expressing the curvatures in terms of moments, or the moments
in terms of curvatures.
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In the present case the total strain energy per unit area can be conveniently written as the sum of three

terms, as follows.

1. Strain energy in the initial configuration, i.e. associated with the initial bending moment M0y , given by:
U1

U2

Fig. 18. C

minima a
¼ 1

2

M2
0y

Dð1� m2Þ ð38Þ
where D ¼ Et3=12ð1� m2Þ is the shell bending stiffness.

2. Work done by the initial bending moment, M0y , for the corresponding curvature change Djy :
¼ M0yDjy ð39Þ
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ontour plots, at intervals of 0.2 N/mm, of total strain energy per unit area (units N/mm) for test case 3, showing two local

nd hence two stable configurations.
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3. Strain energy due to the curvature changes Djx, Djy , Djxy
U3
 ¼
1

2
DðDj2

x þ 2mDjxDjy þ Dj2
y þ 2ð1� mÞDj2

xyÞ ð40Þ
Hence, an expression for the total strain energy is obtained by substituting Eqs. (38)–(40) into
U ¼ U1 þ U2 þ U3 ð41Þ
and then replacing the curvature changes with the expressions given in Eq. (36).

A search for local minima in the energy surface can be carried out by plotting the variation of U with

respect to jc and h, which is easily done using a polar contour plot. Fig. 18 shows this plot for experimental

test case 3, where the initial configuration has jx ¼ j0
3x ¼ �1=15 mm and My ¼ �0:52 Nmm/mm. Note that

2h has been plotted, instead of h, so that each configuration is considered only once. The curvature of the

cylinder is plotted on the polar axis, however positive and negative curvatures cannot be shown in the same

plot, hence negative curvatures have been shown in Fig. 18(a), and positive curvatures in Fig. 18(b). In each

plot there is one energy minimum, note that the two minima are at 2h ¼ 180� from one another, and hence

correspond to a 90� flip of the shell.

Note that the energy minimum in Fig. 18(a) has a value lower than the minimum in Fig. 18(b), and hence

if the shell is in the higher energy stable configuration, a relatively small perturbation would be required to

trigger a ‘‘jump’’ to the lower energy configuration. Also note that the curvatures corresponding to these
energy minima coincide exactly with those obtained through the equilibrium approach, in Section 6. This

is no surprise, of course, because the initial strain energy in the two analyses has been set equal by using

M0y to set up the initial strain energy.

Finally, note that the shell cannot lose its stability through twisting because its strain energy increases

for any (small) deformation of the shell away from either local minimum.
8. Discussion and conclusion

The bistability of thin, prestressed cylindrical shell structures, whose stable configurations have curva-

tures of opposite sign, has been explained and analysed in detail. The key effect is that a set of residual

bending stresses (i.e. non-uniform through the thickness) acting along the direction of the cylindrical axis
needs to be introduced. In the original configuration, these stresses are equilibrated by membrane stresses

(i.e. uniform through the thickness) in the shell acting as a beam.

If a sufficiently large disturbance is applied, the shell flips to its alternate stable state in which, again,

bending stresses in the now longitudinal direction are equilibrated by membrane stresses. In both confi-

gurations, the bending stresses in the transverse direction have zero resultant.

A qualitative analysis of the elastic–plastic forming process that sets up an appropriate distribution of

residual stresses has been presented, and a more refined elastic–plastic model with strain hardening has been

implemented, based on a uniaxial stress–strain relationship for the material. Using this model, the cur-
vatures of six beryllium–copper cylindrical shells that undergo a specified forming process have been

estimated, and these estimates have been compared to actual measurements. The errors in the predictions

are typically less than 10%.

It is clear that the sequence of uniform curvature states assumed for the model presented in this paper

implicitly require the presence of non-zero bending moments along the edges. However, since these edge

moments are certainly zero in the final stable states, the predicted stress distributions will be incorrect in a

short boundary layer around the edges of the shells. Typically, the length of this boundary layer is the

geometric mean of the thickness times the radius of curvature of the shell (Calladine, 1983); effects of this
type have been studied by Galletly and Guest (2004b).
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There are other effects that, although potentially important, were not included in our model. Probably

the most important among these are friction between the rollers, possibly causing some stretching of the

mid-surface of the shell, and the use of a uniaxial tension test to characterize biaxial strain hardening

behaviour involving both tensile and compressive strains.
However, the excellent agreement between our predictions and experimental results suggests that these

effects are indeed small, at least for the cases considered.
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